Department of Education (DoE)

New High School for Medowie

Ecologically Sustainable Design (ESD) Report Reference: ESD-MH-REP-004

REF Rev 4 | 29 January 2025

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 304050-00

Arup Australia Pty Ltd | ABN 76 625 912 665

Arup Australia Pty Ltd Level 5

Level 5 151 Clarence Street Sydney NSW, 2000 Australia arup.com

Document Verification

Project title	New High School for Medowie
Document title	Ecologically Sustainable Design (ESD) Report
Job number	304050-00
Document ref	ESD-MH-REP-004
File reference	

Revision	Date	Filename	ESD REF Repo	rt		
1	29 November 202	4Description				
			Prepared by	Checked by	Approved by	
		Name	Enda Seyama- Heneghan	Alex Rosenthal	Edward Caine	
		Signature	C			
REF Rev 2	10 January 2025	Filename				
		Description	For planning approval/REF. Update based on planner comments.			
			Prepared by	Checked by	Approved by	
		Name	Enda Seyama- Heneghan	Alex Rosenthal	Edward Caine	
		Signature	6			
REF Rev 3	22 January 2025	Filename				
		Description	Update to includ	le Section 1.3 and	Appendices.	
			Prepared by	Checked by	Approved by	
		Name	Enda Seyama- Heneghan	Alex Rosenthal	Edward Caine	
		Signature	0			

REF Rev 29 January	Filename						
4	2025	Description	Update to address planner comments. Minor wording changes to Appendix A.2, addition of reference to Appendix A.2 in mitigation measures.				
			Prepared by	Checked by	Approved by		
		Name	Enda Seyama- Heneghan	Alex Rosenthal	Edward Caine		
		Signature					

Issue Document Verification with Document

Contents

1.	Introduction	1
1.1	Site Description	1
1.2	Project Description	2
1.3	REF Reporting Requirements	3
2.	Sustainability and ESD Strategy	4
2.1	Sustainable Buildings SEPP Requirements	4
2.2	NCC 2022 Section J Compliance	5
2.3	Green Star Rating	5
2.4	Responsible	5
2.5	Healthy	6
2.6	Resilient	6
2.7	Positive	6
2.8	Places	7
2.9	People	7
2.10	Nature	7
3.	Conclusion	7
3.1	Mitigation Measures	8
3.2	Evaluation of Environmental Impacts	8
Table	S	
Table	1 Sustainable Buildings SEPP requirements	4
Table	2 Mitigation Measures	8

Figures

Figure 1 Aerial image of the site (Source: Nearmap)	2
Figure 2 Site Plan	3

A.1	Green Star Pathway	9
A.2	Climate Change Resilience Plan	13

1. Introduction

This Ecologically Sustainable Development (ESD) Report has been prepared to support a Review of Environmental Factors (REF) for the proposed New High School for Medowie (the activity). The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Section 3.37A of the T&I SEPP.

The activity will be carried out at 6 Abundance Road, Medowie (the site). The purpose of this report is to describe how the proposal will incorporate the principles of ecologically sustainable development in the design, construction and ongoing operation of the activity.

1.1 Site Description

The site has a street address of 6 Abundance Road, Medowie. It is 6.51ha in area, and comprises 1 allotment, legally described as Lot 3 in DP788451.

A large proportion of the site is currently unused and vacant. A small shed structure and caravan are located adjacent to the northern boundary. A cluster of buildings including a single storey dwelling, an outhouse/shed structure and temporary greenhouse are located within the south eastern corner.

The site contains a largely vegetated area to the south west corner. The site is relatively flat with a gradual fall from west to east toward Abundance Road.

The site has a primary frontage to Abundance Road to the east and Ferodale Road to the north. Abundance Road and Ferodale Road are both classified Local Roads. Medowie Road, approximately 1km east of the site, is a classified Regional Road.

The area surrounding the site mostly consists of industrial, rural residential, educational, and agricultural lands. Adjacent to the north western boundary is a Shell petrol station and mechanic garage. Adjacent to the north eastern boundary is a medical health clinic. Across Abundance Road along the eastern boundary are a number of warehouse and light industrial developments. Directly north of the site across Ferodale Road are large lots used for agricultural purposes. Medowie Public School is located on Ferodale Road, to the north west of the site, opposite the Shell petrol station.

Figure 1 Aerial image of the site (Source: Nearmap)

1.2 Project Description

The proposed activity involves the construction of school facilities on the site for the purpose of the New High School for Medowie. The site contains a densely vegetated area to the southwest corner which is identified as land with high biodiversity values corresponding to the areas of remnant native vegetation (PCT 3995 – Hunter Coast Paperbark-Swamp Mahogany Forest). The existing dwelling house and other structures on the site will be demolished as part of the works. No other works are proposed within this area.

The proposed new school will accommodate 640 students in 29 permanent teaching spaces including 3 support teaching spaces across 3-storeys of buildings on the site. The proposed activity be delivered across 1 stage, and will consist of the following:

29 permanent teaching spaces including 3 support teaching spaces, to accommodate 640 students, and school hall to accommodate 1,000 students. Approximately 10,500 sqm of GFA is proposed.

- Main vehicular ingress and egress to Ferodale Road to the north, with a new pedestrian and vehicle crossing proposed.
- Main pedestrian access to Abundance Road.
- Kiss and ride, and bus drop and pick up areas to Abundance Road (6 x parallel spaces).
- New pedestrian wombat crossing to Abundance Road
- Approximately 55 x car parking spaces and 3 x accessible car parking spaces.
- Approximately 70 x bicycle parking spaces.
- Block A (Admin) consisting of administration and learning spaces.
- Block B (Foodtech/Workshop) consisting of food technology rooms and workshops.
- Block C (Hall) consisting of school hall to accommodate 1,000 students.
- Central quad, 1 playing field, and 1 sports courtyard.

The proposed school development will include the following spaces; general learning spaces, General support learning spaces, administrative services, staff areas, gym and canteen, library areas for science, wood

and metal, food and textiles, health PE, performing arts, additional learning spaces, student amenities, storage, movement (stairs and covered walkways).

Figure 2 Site Plan

1.3 **REF Reporting Requirements**

Requirement	Relevant Report Section
Ecologically sustainable development	
 Does the ESD Report set sustainability targets for the activity in line with the department's commitments, including: Green Star Buildings certification for projects with >1000m2 new building and >\$10m EDC of 5 Star for Sydney, Wollongong and Newcastle metro or 4 Star for rest of NSW Operational energy and potable water intensity targets for the activity? 	Section 2.3, Section 2.7
 If Green Star Buildings certification is required, does the ESD Report include: the Green Star registration number for the project, and a Green Star Building pathway showing how activity will achieve the required number of credit points to certify? 	Section 2.3, Appendix A.1
If applicable under the Sustainable Buildings SEPP, has an NABERS embodied emissions material form been included in the ESD Report?	Provided by separate submission of NABERS Materials reporting template.
Does the ESD report include a Climate Change Risk Assessment and Adaptation Plan?	Section 2.6, Appendix A.2
For sites identified as any high or extreme risks in the Climate Change Risk Assessment and Adaptation Plan, have design responses been identified to been incorporated into the project to mitigate the risks?	Appendix A.2
 Does the ESD Report adequately address how the activity will: minimise waste from associated demolition and construction; minimise peak electricity demand; 	Sections listed in Section 2.1

Requirement	Relevant Report Section
 minimise overall energy use through passive design; generate and store renewable energy; minimise consumption of potable water; and meter and monitor energy and water consumption and energy generation? 	
Does the ESD Report include a Net Zero Action Plan / Net Zero in operations plan (exact name TBA) that adequately addresses how the activity has been designed to eliminate use of fossil fuels during operations, or how the use of fossil fuels will be minimised and will be eliminated by 2035?	Provided by separate submission of ESD-MH- REP-005 Net Zero Statement.

2. Sustainability and ESD Strategy

The activity has developed a comprehensive ESD strategy to address the minimum requirements set out in the following:

- Clause 7(4) of Schedule 2 of the Environmental Planning and Assessment Regulation
- School Infrastructure New South Wales (SINSW) Education Facilities Standard and Guidelines (EFSG)
- Government Architect NSW (GANSW) Design Guide for Schools and Environmental Design in Schools Manual
- NSW Government Resource Efficiency Policy (GREP)
- NSW State Environmental Planning Policy for Sustainable Buildings (Sustainable Buildings SEPP)
- National Construction Code (NCC) 2022 Section J Part J4 and J5

The strategy is reflected in a registration for a Green Star Buildings third-party certification, with a minimum rating target of 4 Stars. This target performance is considered "Best Practice" level by the Green Building Council of Australia (GBCA). The Green Star rating is currently pursued for the proposed activity.

This document outlines the ESD initiatives that are being considered within the building's design to achieve the above aims and targets.

2.1 Sustainable Buildings SEPP Requirements

The following requirements apply to non-residential developments under Section 3.2 of the Sustainable Buildings SEPP:

Issue and Asse	ssment Requirements	Addressed within section of this ESD report
Consideration of whether the design	The minimisation of waste from associated demolition and construction, including by the choice and reuse of building materials	Section 2.4
enables	A reduction in peak demand for electricity, including through the use of energy efficient technology	Section 2.7
	A reduction in the reliance on artificial lighting and mechanical heating and cooling through passive design	Sections 2.5, 2.7
	The generation and storage of renewable energy	Section 2.7
	The metering and monitoring of energy consumption	Section 2.4
	The minimisation of the consumption of potable water	Section 2.7

Table 1 Sustainable Buildings SEPP requirements

Quantification of the embodied emissions attributable to the development

2.2 NCC 2022 Section J Compliance

The activity is committing to exceed the Deemed-to-Satisfy (DTS) requirements of NCC 2022 Section J. In line with the EFSG requirements, the activity is targeting a 10% reduction in energy consumption, in comparison to a minimum NCC 2022 DTS compliant building, excluding any contribution from renewable energy (e.g. rooftop solar PV). This target is applied for both assessments: Block A and Block B assessed as a united building, and Block C assessed as a single building. A Section J Part J4 minimum DTS compliance assessment was conducted in Schematic Design stage, which sets out the minimum required fabric performance in order to meet a 10% improvement above DTS provisions.

2.3 Green Star Rating

The project is registered with the GBCA under the Green Star Buildings v1 rating tool and is being designed to a minimum Green Star 4 Star rating. It is registered as:

• GS-13033B New High School in Medowie Stage 1.

The following sections detail best practice sustainability initiatives currently integrated in the design, based on the credits currently targeted within the Green Star Buildings framework. As the design is further developed, the targeted credits may me removed or substituted, or new credits added. Green Star Buildings framework categories presented in the following sections also encompass the requirements of the EFSG.

2.4 Responsible

The following initiatives are currently included in the sustainability strategy:

- Green Star accredited professional has been contractually engaged to provide advice, support and information.
- Environmental targets for the activity and a system in place to measure results:
 - o 20% reduction in energy use compared to reference building
 - Water efficient fixtures and water-using appliances
 - o 10% reduction in upfront carbon emissions compared to reference building
 - Airtightness target of 4 m³/h.m² (AP50) based on ATTMA TSL2
- Design for optimum ongoing management through appropriate metering and monitoring systems. Services and maintainability reviews to be conducted, and commissioning and tuning of building systems to ensure systems are operating as intended.
- Provision of building information to facilitate operator and user understanding of all building systems, and their specific operation and maintenance requirements and/or environmental targets.
- Responsible construction practices to be put in place by the Contractor, including development of project-specific best-practice environmental management plan (EMP). Implementation of a formalised approach to planning, implementing and auditing during construction to ensure conformance with the EMP.
- Minimum of 90% of waste generated from construction and demolition to be reused or recycled, to limit the amount of waste going to landfill. Waste management plans to be developed by the Contractor for demolition, construction and operation of the site.
- Specialist waste consultant to develop an operational waste management plan (OWMP). OWMP principles to be incorporated into the design in future project phases, including separation of waste streams (general, recycling, and organics or other) and design of adequate waste storage area.

2.5 Healthy

The following initiatives are currently included in the sustainability strategy:

- Pollutants entering the building are minimised and a high level of outdoor air (50% improvement above AS1668.2) is provided to the regularly occupied spaces.
- Best-practice lighting is provided to improve lighting comfort via flicker-free, high-quality lighting that accuracy addresses the perception of colour within the space, and glare from light sources is limited.
- High levels of daylight and external views are provided to regularly occupied learning and administration areas, to support high levels of visual comfort for building occupants. Detailed daylight modelling will be undertaken in future project phases.
- The building's acoustic design aims to deliver acoustic comfort through achieving maximum internal noise levels, providing acoustic separation, and controlling reverberation.
- Internal air pollutants have been reduced via selection of materials with low or no volatile organic compound (VOC) levels and low formaldehyde concentrations.
- On-site TVOC and formaldehyde tests to verify levels are within concentration limits.

2.6 Resilient

The following initiatives are currently included in the sustainability strategy:

- Design to respond to future climate impacts as identified by a climate change risk assessment. A climate adaptation risk register has been developed for the building to address specific climate risks of the design and how they might be mitigated to reduce risk. Adaptation responses to address high and extreme risks have been proposed within the project's Climate Resilience Plan (refer to Appendix A.2).
- Strategies to minimise the urban heat island effect including light-coloured roofing and external finishes, as well as maximising the extent of landscaping elements.

2.7 Positive

The following initiatives are currently included in the sustainability strategy:

- The activity is to align with the SINSW Commitment to Sustainability Goals for 2030 (net zero emissions in operations) and the Sustainable Buildings SEPP requirements (fossil fuel free by 2035). The design team's current inclusions are as follows:
 - o 100% electric services including heat pumps for heating and domestic hot water
 - No piped gas connection; only gas bottles provision for science laboratory and 50% of VET cooking stovetops. Bottled gas use intended to allow future transition away from gas.
 - o Refer to ESD-MH-REP-005 Net Zero Statement prepared to support REF
- Passive design principles, including high-performance building envelope, effective shading and building orientation, and natural ventilation openings to support comfortable and low-energy indoor environment quality.
- Exceeding NCC 2022 Section J minimum DTS requirements. The EFSG Section DG02.03 requires the activity to target a 10% reduction in energy consumption, in comparison to a minimum NCC 2019 DTS compliant building, excluding any contribution from renewable energy (e.g. rooftop solar PV). The project proposes to verify this via NCC 2022 Section J DTS calculations. No energy or thermal modelling has been scoped.
- Effective shading devices which reduce solar heat gains to conditioned spaces.

- Energy-efficient lighting (typically LED) will be provided throughout, and high efficiency heating and cooling.
- Fully electric building services.
- Roof mounted solar photovoltaic (PV) system in accordance with EFSG requirements.
- Enhance the water efficiency of the proposed activity and reduce potable water consumption associated with the above major uses:
 - Selection of water-efficient sanitary fittings and fixtures in line the Green Star and EFSG requirements;
 - Rainwater harvesting and water reuse system for irrigation and toilet flushing;
 - No water-based heat rejection systems for air conditioning (no cooling towers).
- Reduction of Portland cement content and aggregates in all structural concrete used.

2.8 Places

The following initiatives are currently included in the sustainability strategy:

- End-of-trip facilities for staff in Block A to encourage active transport modes of commuting. Facilities to be safe and protected.
- Traffic engineer to carry out a transport assessment in line with the SINSW requirements.
- School infrastructure designed to encourage access by public transport and site walkability.
- Provision of bicycle parking facilities.

2.9 People

The following initiatives are currently included in the sustainability strategy:

- Contractor's construction practices to promote diversity and reduce physical and mental health impacts.
- Universal design principles implemented to provide safe, equitable and dignified access for persons with disabilities.
- The activity implements a social procurement plan and generates employment opportunities for disadvantaged and under-represented groups.

2.10 Nature

The following initiatives are currently included in the sustainability strategy:

- Appropriate internal and external lighting design to reduce light pollution. External lighting to be designed such that the Upward Light output Ratio (ULOR) <5%.
- Incorporate an appropriate landscape area that includes a diversity of species and prioritises the use of climate-resilient and Indigenous plants. A site-specific Biodiversity Management Plan to be developed.

3. Conclusion

This report identifies the sustainability measures being pursued by the project team, in alignment with the frameworks and requirements applicable to the activity. The sustainability strategy includes holistic design and operational initiatives, to encourage best practice design towards energy, water, and waste reduction; as

well as providing improved indoor environmental quality and a positive impact on nature and the community.

3.1 Mitigation Measures

Table 2 Mitigation Measures

Mitigation Number/Name	Aspect/Section	Mitigation Measure	Reason for Mitigation Measure	
Green Star Strategy Prior to commencement of any construction work		Finalisation and demonstration of all Green Star strategy targeted credits, through the award of a Green Star Design Review certification.	The credits forming the Green Star strategy aim to enhance sustainability of the project and minimise impact on the locality, community and/or the environment.	
Sustainability Strategy	Prior to commencement of any construction work	If any departures from the sustainability strategy described in this report arise, a review of the strategy is required.	Ensure the proposed activity still meets the ESD initiatives and targets.	
Section 2.3 Responsible – Metering and Monitoring	During design finalisation	Services and maintainability reviews to be conducted.	Design for optimum ongoing management and operations.	
Section 2.3 Responsible – Contractor EMP		Responsible construction practices to be put in place by the Contractor, including development of project-specific best-practice environmental management plan (EMP).	Construction practices to reduce impacts and promote opportunities for improved environmental and social outcomes.	
Section 2.3 Responsible – Construction and Demolition Waste Management	Prior to commencement of any construction work	Waste management plans to be developed by the Contractor for demolition, construction and operation of the site.	Construction practices to reduce impacts and promote opportunities for improved environmental and social outcomes.	
Section 2.3 Responsible – OWMP	During design finalisation	Specialist waste consultant to develop an operational waste management plan (OWMP).	Management of operational waste in a safe and efficient manner.	
Section 2.6 Resilient – Climate Change Resilience Mitigation Measures	During design finalisation	Ensure delivery of adaptation measures as presented within the Climate Resilience Plan (Appendix A.2).	Ensure resilience of the activity against climate change related risks.	
Section 2.8 People – Contractor inclusive policies	Prior to commencement of any construction work	Demonstration of Contractor policies that promote diversity and reduce physical and mental health impacts.	Construction practices to promote diversity and reduce physical and mental health impacts.	
Section 2.9 Nature – Biodiversity Management Plan	During design finalisation	Develop a site-specific Biodiversity Management Plan.	Ensure biodiversity is maintained during operations.	

3.2 Evaluation of Environmental Impacts

- 1. The extent and nature of potential impacts are low and will not have significant impact on the environment.
- 2. Potential impacts can be appropriately mitigated or managed to ensure that there is minimal impact on the environment.

A.1 Green Star Pathway

The Green Star strategy targets points as per the pathway below, including the credits referenced in Section 2, however credits may be added, removed, or substituted in the further design development while retaining a target rating of minimum 4 Stars.

	0	innun i Stars.		_	_			
Credit	Name	Credit Type	Points	Minimum Requirement	Climate Positive Pathway (5-star)	Targeted credits (4- Star)	Risk	Criteria
1	Industry Development	Credit Achievement	1			0	L	The building owner or developer appoints a Green Star Accredited Professional, discloses the cost of sustainable building practices to the GBCA, and markets the building's sustainability achievements.
2	Responsible Construction	Minimum Expectation	0			S	L	The builder or head contractor has an environmental management system and plan in place to manage its environmental impacts on site; The builder diverts at least 80% of construction and demolition waste from landfill; The head contractor provides training on the sustainability targets of the building.
		Credit Achievement	1			Ø	L	90% of construction and demolition waste is diverted from landfill, and waste contractors and facilities comply with the Green Star Construction and Demolition Waste Reporting Criteria.
3	Verification + Handover	Minimum Expectation	0			0	L	The building has set environmental performance targets, designed and tested for airtightness, been commissioned, and will be tuned. The building was set up for optimum ongoing management due to its appropriate metering and monitoring systems. The project team create and deliver operations and maintenance information to the facilities management team at the time of handover. Information is available to building users on how to best use the building.
		Credit Achievement	1			⊗	L	An independent level of verification is provided to the commissioning and tuning activities through the involvement of an independent commissioning agent, or through a soft landings approach that involves the future facilities management team. For large projects (building services value >\$20M), both must occur.
4	Responsible Resource Management	Minimum Expectation	0			0	L	The project team must demonstrate the building is designed to allow effective management of operational waste by: • Separating waste streams; • Providing a dedicated and adequately sized waste storage area; and • Ensuring efficient and safe access to waste storage areas for both occupants and waste collection contractors.
5	Responsible Procurement	Credit Achievement	1			8	М	 The building's design and construction procurement process follows ISO 20400 Sustainable Procurement - Guidance and at least 10 items and identified supply chain risk and opportunity are addressed. A responsible procurement plan is developed
6	Responsible Structure	Credit Achievement	3			8	М	50% of all structural components (by cost) meet a Responsible Products Value score of at least 10.
		Exceptional Performance	2			⊗	н	In addition to the Credit Achievement, one of the following is met: 10% of all products in the structure (by cost) meet a Responsible Products Value score of at least 15; OR 80% of all products in the structure (by cost) meet a Responsible Products Value score of at least 10.
7	Responsible Envelope	Credit Achievement	2			⊗	М	30% of all building envelope components (by cost) meet a Responsible Products Value score of at least 10.
		Exceptional Performance	2			8	н	In addition to the Credit Achievement, one of the following is met: 10% of all products in building envelope (by cost) meet a Responsible Products Value score of at least 15; OR • 60% of all products in the building envelope (by cost) have an average Responsible Products Value score of at least 10.
8	Responsible Systems	Credit Achievement	1			⊗	н	20% of all active building systems (by cost) meet a Responsible Products Value score of at least 6.
		Exceptional Performance	1			⊗	Н	In addition to the Credit Achievement, one of the following is met: • 5% of all active building systems (by cost) meet a Responsible Products Value score of at least 11; OR • 35% of all active building systems (by cost) have an average Responsible Products Value score of at least 6.

9	Responsible Finishes	Credit Achievement	I	0	М	40% of all internal building finishes (by cost) meet a Responsible Products Value score of at least 7.
		Exceptional Performance	1	8	н	In addition to the Credit Achievement, one of the following is met: • 10% of all internal building finishes (by cost) meet a Responsible Products Value score of at least 12; OR • 60% of all internal building finishes (by cost) have an average Responsible Products Value score of at least 7.
10	Clean Air	Minimum Expectation	0	ø	L	Pollutants entering the building are minimised, and a high level of fresh air (50% greater than AS1668) is provided to ensure levels of indoor pollutants are maintained at acceptable levels; OR Performance based approach showing CO2 maintained below 800 ppm in regularly occupied areas.
		Credit Achievement	2	8	М	The building's ventilation systems allow for easy maintenance, and high levels of outdoor air (100% greater than AS1668) are provided.
11	Light Quality	Minimum Expectation	0	0	L	The building provides adequate levels of daylight and good lighting levels suitable for the typical tasks in each space.
		Credit Achievement	2	0	L	The building provides either best practice Artificial Lighting OR best practice access to daylight.
		Exceptional Performance	2	8	н	The building provides both best practice Artificial Lighting AND best practice access to daylight.
12	Acoustic Comfort	Minimum Expectation	0	0	L	An Acoustic Comfort Strategy is prepared to describe how the building and acoustic design aims to deliver acoustic comfort to the building occupants.
		Credit Achievement	2	0	М	The building is designed and tested to achieve minimum acoustic performance requirements aligned with the Acoustic Comfort Strategy.
13	Exposure to Toxins	Minimum Expectation	0	0	L	The building's paints adhesives, sealants, carpets, and engineered wood products are low or non-toxic. Occupants are not exposed to banned or highly toxic materials in the building.
		Credit Achievement	2	0	L	On-site tests verify the building has low Volatile Organic Compounds (VOC) and formaldehyde levels.
14	Amenity and comfort	Credit Achievement	2	8	L	The building has at least one dedicated amenity room to act as parent room, a relaxation room, or an exercise room. Rooms must be accessible to all staff and occupants. Minimum size 1m2 per every 10 staff or occupants. Must be separate from bathrooms.
15	Connection to Nature	Credit Achievement	1	8	н	 The building provides views (60% of regularly occupied areas); AND (Includes indoor plants and incorporates nature-inspired design; OR 5% of the building's floor area is allocated to nature in which occupants can directly engage with.)
		Exceptional Performance	1	8	н	 The building provides views (60% of regularly occupied areas); AND Includes indoor plants and incorporates nature-inspired design; AND 5% of the building's floor area is allocated to nature in which occupants can directly engage with.
16	Climate Change Resilience	Minimum Expectation	0	0	L	The project team completes the climate change pre-screening checklist. The project team communicates the building's exposure to climate change risks to the applicant.
		Credit Achievement	1		L	The project team develops a project-specific climate change risk and adaptation assessment for the building. Extreme and high risks are addressed.
17	Operations Resilience	Credit Achievement	2	8	L	The project team undertakes a comprehensive review of the acute shocks and chronic stresses likely to influence future building operations. * The building's design and future operational plan addresses any high or extreme system-level interdependency risks. * The building's design maintains a level of survivability and design purpose in a blackout.
18	Community Resilience	Credit Achievement	1	8	М	The project team undertakes a needs analysis of the community, identifies shocks and stresses that impact the building's ability to service the community, and develops responses to manage these.
19	Heat Resilience	Credit Achievement	1	0	М	At least 75% of the whole site area comprises of one or a combination of strategies that reduce the heat island effect.

<u> </u>	i			I		The building meets one or several of the following to reduce peak electricity demand by 10%:
20	Grid Resilience	Credit Achievement	3	8	М	He offining interview of sector of the following of reduce part electricity demand by 10%. Provides active generation and storage systems; Has the infrastructure to deliver an appropriate demand response strategy; or Has reduced its electricity consumption through passive design.
21	Upfront Carbon Emissions	Minimum Expectation	0	0	м	The building's upfront carbon emissions are at least 10% less than those of a reference building
		Credit Achievement	3	8	Н	The building's upfront carbon emissions are at least 20% less than those of a reference building, and offset existing building demolition works
		Exceptional Performance	3	8	н	The building's upfront carbon emissions are at least 40% less than those of a reference building, and all remaining emissions from Modules $A1 - A5$ are offset.
22	Energy Use	Minimum Expectation	0	0	L	The building's energy use is at least 10% less than a reference building
		Credit Achievement	3	0	L	The building's energy use is at least 20% less than a reference building. (Minimum requirement for 5 Stars)
		Exceptional Performance	3	⊗	н	The building's energy use is at least 30% less than a reference building
23	Energy Source	Minimum Expectation	0	0	L	The building provides a Zero Carbon Action Plan.
		Credit Achievement	3	8	н	100% of the building's electricity comes from renewable electricity
		Exceptional Performance	3	8	н	100% of the building's energy comes from renewables; all elecric building (Minimum requirement for 5 Stars)
24	Other Carbon Emissions	Credit Achievement	2	8	L	The building owner eliminates (GWP<10) or offsets emissions from refrigerants. (Minimum requirement for 5 Stars)
		Exceptional Performance	2	8	М	All other emissions not captured in the Positive category are eliminated or offset.
25	Water Use	Minimum Expectation	0	0	L	The building installs efficient water fixtures or uses 15% less potable water compared to a reference building.
		Credit Achievement	3	8	м	The building uses 45% less potable water compared to a reference building.
		Exceptional Performance	3		Н	The building uses 75% less potable water compared to a reference building.
26	Life cycle Impacts	Credit Achievement	2	×	н	The project demonstrates a 30% reduction in life cycle impacts when compared to standard practice.
27	Movement and Place	Minimum Expectation	0	0	L	The building includes showers and changing facilities for building occupants that are accessible, inclusive and located in a safe and protected space.
		Credit Achievement	3	8	н	The building's design and location prioritises walking, cycling, and transport options that reduce the need for private fossil fuel powered vehicles.
28	Enjoyable Places	Credit Achievement	2	8	М	The building delivers memorable, beautiful, vibrant communal or public places where people want to gather and participate in the community. The spaces are inclusive, safe, flexible and enjoyable.
29	Contribution to Place	Credit Achievement	2	8	м	The building's design contributes to the liveability of the wider urban context and enhances the public realm; or independent reviews are held during design development
30	Culture, Heritage, Identity	Credit Achievement	1	8	Н	The building's design reflects and celebrates local demographics and identities, the history of the place, and any hidden or minority entities; or this outcome was arrived through meaningful engagement with community groups early in the design process.
31	Inclusive Construction Practices	Minimum Expectation	0	0	L	During the building's construction, the head contractor provides gender inclusive facilities and protective equipment. The head contractor also installs policies on-site to increase awareness and reduces instances of discrimination, racism and bullying.
		Credit Achievement	1	0	L	The head contractor provides high quality staff support on-site to reduce at least five key physical and mental health impacts relevant to construction workers. They must also carry out a needs analysis, and evaluate the effectiveness of their interventions.

32	Indigenous Inclusion	Credit Achievement	2	8	н	The building's design and construction celebrates Aboriginal and Torres Strait Islander people, culture and heritage by incorporating design elements using the Indigenous Design and Planning principle
33	Procurement and Workforce Inclusion	Credit Achievement	2	0	L	Through the implementation of a social procurement strategy, at least 2% of the building's total contract value has been directed to generate employment opportunities for disadvantaged and under- represented groups.
		Exceptional Performance	1	8	М	Through the implementation of a social procurement strategy, at least 4% of the building's total contract value has been directed to generate employment opportunities for disadvantaged and under-represented groups.
34	Design for Inclusion	Credit Achievement	2	0	L	The building is designed and constructed to be inclusive to a diverse range of people with different needs. Includs equitable and safe access to the building, diverse wayfinding, and inclusive spaces (e.g. parents room, family restrooms)
		Exceptional Performance	1	8	М	Engagement with target groups to conduct a needs analysis, which informs the inclusive design.
35	Impacts to Nature	Minimum Expectation	0	0	М	The building was not built on, or significantly impacted, a site with a high ecological value. Light pollution is minimised.
		Credit Achievement	2	8	н	 The building's design and construction conserves existing natural soil, hydrological flows and vegetation elements; and If deemed necessary by an Ecologist, at least 50% of existing site with high biodiversity value is retained
36	Biodiversity Enhancement	Credit Achievement	2	0	М	 The building's site includes an appropriate landscape area; The landscaping includes a diversity of species and prioritises the use of climate-resilient and indigenous plants; and The project team develops a site-specific Biodiversity Management Plan and provides it to the building owner or building owner representative.
		Exceptional Performance	2	8	Н	 A greater area of landscaping is provided; and The landscaping includes critically endangered and/or endangered plant species native to the bioregion.
37	Nature Connectivity	Credit Achievement	2	8	Н	The site must be built to encourage species connectivity through the site, and to adjacent sites. If the project sits within a blue or green grid strategy it must contribute to the goals of the strategy.
38	Nature Stewardship	Credit Achievement	2	8	н	The building owner, as part of the project's development, undertakes activities that protects or restores biodiversity at scale beyond the development's boundary. Area of restoration or protection must be equivalent to GFA.
39	Waterway Protection	Credit Achievement	2	8	Н	The building demonstrates an annual average flow reduction (ML/yr) of 40% compared to pre- development levels and meets specified pollutants targets.
		Exceptional Performance	2	8	н	The building demonstrates an annual average flow reduction (ML/yr) of 80% compared to pre- development levels and meets specified pollutants targets.
40	Market Transformation	Credit Achievement	1	0	н	The project demonstrates: • How a building solution or process is considered leading in their targeted sector, nationally or globally; or • That the technology or process is not commonly used within Australia's building industry; or globally, depending on the context of the innovation claimed.
41	Leadership Challenges - Climate Positive Pathway	Credit Achievement	1	0	L	l point is awarded if the Climate Positive Pathway is achieved.
	Leadership Challenges - Fossil Fuel Free Construction Sites	Credit Achievement	3	0	н	The project has achieved specific credits within the relevant rating tool 20% of high emitting construction equipment on a high emitting construction activity is fossil fuel free The site offices are powered by 100% renewable energy All electricity used by the construction site is 100% renewable.

A.2 Climate Change Resilience Plan

Climate Resilience Plan

Medowie High School

January 2025

Document Verification

Project name: SINSW G	ROUP 1 MEDOWIE		30405000				
Climate Resilience Plan			Climate resilience plan_Medowie High School				
Schools Infrastructure N	SW		•				
Version	Date						
V01		Description Climate Resilience Plan for Medowie High School					
	14/11/2024		Prepared by	Checked by	Approved by		
		Name	Lalita Garg	Amelia Tomkins	Amelia Tomkins		
		Description	Minor updates to student/s	staff numbers, images, wording for REF	submission.		
V02	29/01/2025		Prepared by	Checked by	Approved by		
		Name	Lalita Garg, Enda Seyama	-Heneghan Amelia Tomkins	Amelia Tomkins		

Acknowledgement of Country

Arup acknowledges the Traditional Owners across all lands, waters, and skies our firm may reach; we acknowledge their wisdom, resilience, and rich cultural heritage. We pay our respects to the Elders, past and present, and to all Aboriginal and Torres Strait Islander peoples.

We recognise the ongoing journey of healing and reconciliation, and Arup commits to walking alongside First Nations peoples, to acknowledge their teachings and foster a future of unity and respect.

'Continuing to Shift to shape an even better world' original artwork by Tarni O'Shea of Gilimbaa and updated by David Williams of Gilimbaa.

Contents

Background and approach	
Site context	10
Understanding future climate	14
Climate risk assessment	
Adaptation measures	
Monitoring and evaluation	

Appendices

Appendix A: Qualitative criteria matrices Appendix B: Climate Change Risk Register

Background and approach

Background

Medowie High School development

Medowie was identified as the location for a new high school by the NSW Department of Education to meet the need for a local high school for forecast growth in the local area and to unlock capacity in existing high schools in the School Catchment Group.

Medowie High School is a new high school for 640 students and 49 full time staff. The new high school will accommodate up to 51 permanent teaching spaces including 3 support learning spaces. The new high school for Medowie is located in the Port Stephens Government Area and occupies Lot 3 DP 788451. The site has frontage to Ferodale Road and Abundance Road.

Climate change and education

The climate has already changed over the past decades impacting both the built and natural form in Australia, through a hotter and drier climate, increased intensity of extreme weather events, and sea level rise.

Climate change is profoundly impacting schools and education systems, both directly and indirectly. Directly, extreme weather events – such as floods and heatwaves – can damage school infrastructure and interdependent infrastructure, disrupt learning environments, and threaten student and staff safety. If not well-adapted for future climate conditions, schools may incur higher operational costs due to enhanced climate control systems and increased maintenance as well as capital costs of recovery.

Indirectly, the effects of a more volatile climate lead increased health risks, including heat-related illnesses and respiratory problems from worsening air quality, which can result in higher absenteeism and decreased student engagement. Furthermore, the socioeconomic challenges faced by families due to climate impacts – such as housing instability and job loss – can affect community cohesion, health, and school attendance.

Projected changes in the climate are predicted to further exacerbate these risks, meaning that what is designed, built and operated today needs to be more resilient to future climate conditions and service needs.

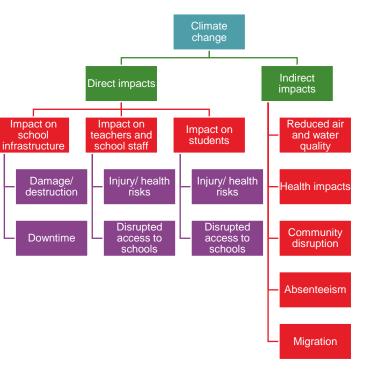


Figure 1: Direct and indirect impacts of climate change on education

Purpose

Purpose of this document

The purpose of this Climate Resilience Plan is to provide an overview of the climate change risk assessment undertaken for the Medowie High School. It sets out the future climate context, priority climate-related risk impacts for the development over the design life, and appropriate design and operational adaptation measures to manage and mitigate risks.

This plan has been developed in accordance with AS5334 *Climate change adaptation for settlements and infrastructure—A risk based approach* and Green Star Buildings credit 16: Climate Change Resilience.

It also responds to the Education Facilities Standards and Guidelines.

SINSW is committed to operating in a manner consistent with Sustainable Development principles (Bruntland, 1987 and UN SDGs), federal and state legislation requirements, and industry best practice. The NSW Department of Education has committed to five sustainability principles, including:

• **Build resilience:** equip school communities to withstand and adapt to change.

Managing uncertainty

Current design standards and codes are based on historical conditions and are unfit for the shifting climate which will see an increase in mean conditions, and more extreme conditions and devastating weather events. Disruption from climate change will reduce the useful life of assets unless they are adequately adapted for future climate conditions.

There is significant uncertainty in climate adaptation planning. To better understand the future impacts of climate change, projections aligned with the latest scenarios from the Intergovernmental Panel on Climate Change's (IPCC) Sixth Assessment Report (AR6) have been adopted. These scenarios, known as Shared Socio-economic Pathways (SSPs), explore how social, technological, and economic changes could affect emissions over time.

The NSW Government recommends using SSP3-7.0 as a high emissions scenario, where CO2 emissions are projected to double by 2100 without further climate policies, leading to an increase of approximately 4 degrees.

For this project, climate-related risks have been assessed under the high emissions scenario (SSP3-7.0) across three relevant time frames.

Figure 2: IPCC Shared Socio-economic Pathways (Source: UNFCCC)

Approach to climate risk and adaptation assessment

Three-staged approach

There are three main stages in the climate risk assessment approach: Establishing the context; Understanding risks; and Risk treatment.

1. Establishing the context for the project

Level of risk to assets, operations and people are based on projected changes in climate as well as site specific factors which may alleviate or exacerbate climate-related impacts. Historical and projected climate data was collated, in addition to natural and physical characteristics of the site.

2. Understanding risks

The next stage involved the identification of potential impacts on the project arising from projected changes in climate variables in future time horizons. A preliminary risk assessment was undertaken to analyse and evaluate the consequence and likelihood of climate-related project impacts under a high emissions scenario (SSP3-7.0) for three time horizons (2030, 2050, 2070).

Analyses was informed by technical reports and stakeholder engagement, using AS5334 criteria matrices.

3. Risk treatment

The final stage was the identification and prioritisation of appropriate adaptation measures to treat priority risks. This included a residual risk assessment to ensure no high or extreme risks remain.

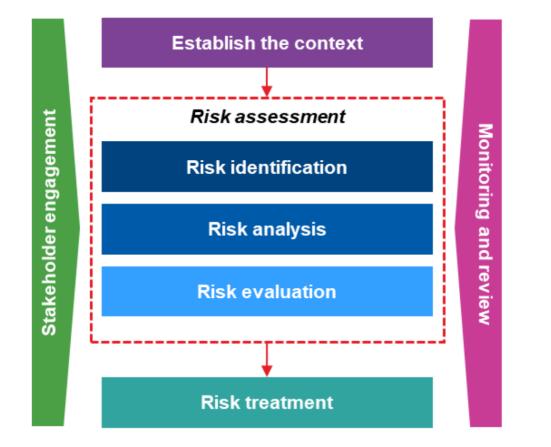


Figure 3: Risk assessment approach based on AS5334: Climate change adaptation for settlements and infrastructure—A risk based approach

Stakeholder engagement

Climate risk and adaptation workshop

This plan was developed in collaboration with project stakeholders to identify and validate priority risks and determine appropriate adaptation measures for implementation in design.

A Climate Risk and Adaptation Workshop was held on 24th October 2024.

The purpose of this workshop was to introduce the climate context for the project, validate priority climate-related risk to the development, identify and prioritise appropriate design and operational adaptation options for inclusion in future design stages.

Risk impacts and adaptation opportunities were considered for architecture, building services, civil, structural, landscaping, transport, utilities, operations, and human health.

Participants

The key stakeholders of the project are listed below:

- John Stalley: Project Manager, Colliers
- Nathan Martin: Project Manager, Colliers
- Meaghan Bennett: Project Director, SINSW
- Robbie McIntosh: Project Officer
- Melanie Karaca: Architecture
- Ashik Dsouza: Architecture
- Tim Henderson: Civil
- Craig Mackay: Structural
- Rod Booth: Building services
- Ed Caine: Buildings services
- Mengling Fu: Landscape
- Thanasi Kordas: Quantity Surveyor
- Enda Seyama-Heneghan: Sustainability
- Maeve Molins: Sustainability , SINSW
- Sophie Stone: Sustainability, SINSW

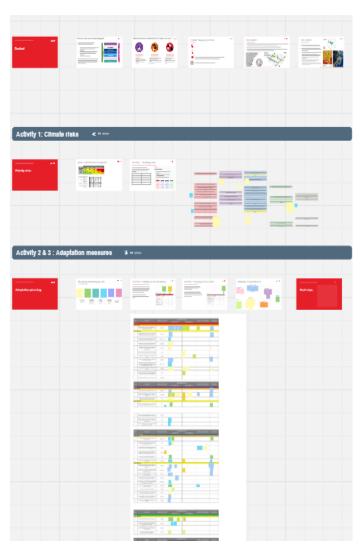


Figure 4: Snapshot of workshop Miro board

Site context

Future climate Climate risks

Adaptation Monitoring and evaluation

ARUP

Proposed activity

Medowie High School

- Medowie is a rural town within the local government area of the Port Stephens, in the Hunter Region of New South Wales. It is located approximately 34km by road north of Newcastle, and about 6.5kms from RAAF Base Williamtown.
- The site is approximately 6.5 ha fronting Abundance Road.
- The new high school will accommodate up to 29 permanent teaching spaces including 3 support learning spaces.
- The North portion of the site extends to Ferodale Road between an existing petrol station to the West and a residential dwelling to the East. Medowie Primary School is located across the road to the north of the site. Existing light industrial buildings are located across Abundance Road to the east. The closest bus stops are located along Ferodale Rd to the north of the site in front of the Medowie primary school. There are bus stops identified on Abundance Road with no associated infrastructure. An existing pedestrian crossing located near the North of the site in front of the existing Medowie primary school.

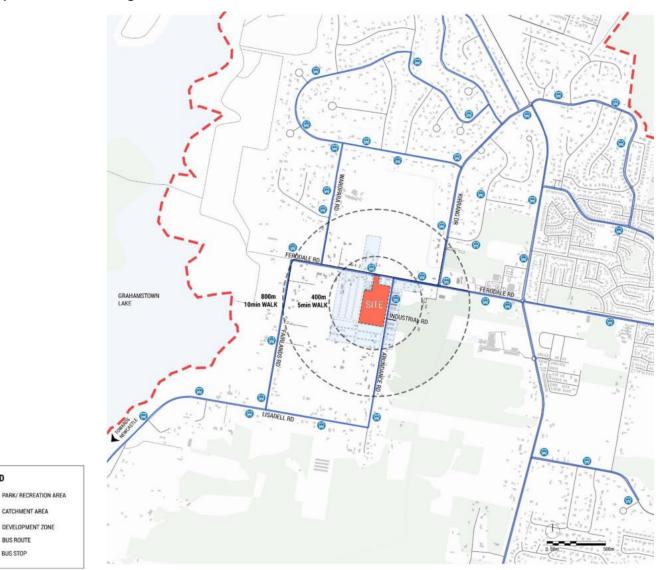


Figure 5: Medowie site location and surrounding infrastructure assets.

LEGEND

Site context

Natural and physical characteristics

- The site has a biodiversity protection zone and bushfire affection associated with the heavily treed southwest section of the site. The site is flood mapped on the east and overhead powerlines cross from the northeast corner.
- The site has a biodiversity protection zone and bushfire affection associated with the heavily treed southwest section of the site. The site is flood mapped on the east and overhead powerlines cross from the northeast corner.
- The site is in a Category 3 bushfire prone area resulting in a medium bushfire risk due to the vegetation present on site. The bushfire assessment identified the subject land is fully mapped as Bush Fire Prone Land (BFPL) and there is a bushfire hazard within 140 m.
- The site has a flood zone to the east and is affected by overland flow. According to existing flood assessments, flood magnitudes up to and including 0.5% AEP flood, therefore the site is predicted to be subject to minor flood inundation and shallow depths of up to 0.15m within a small area in the northern section.
- Based on wind data for Williamtown RAAF (BoM), the prevailing wind direction is north-westerly. The site experiences damaging winds (>8m/s) 7% of the year, which is considered likely.

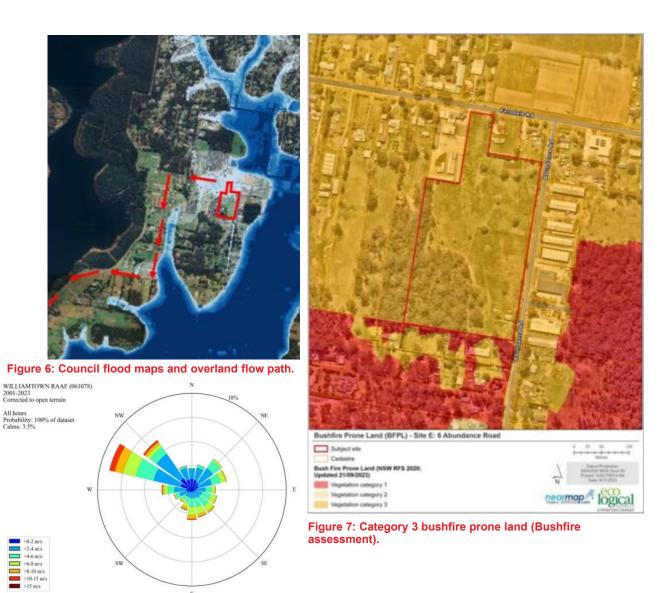
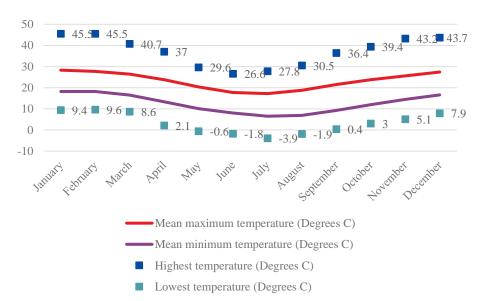
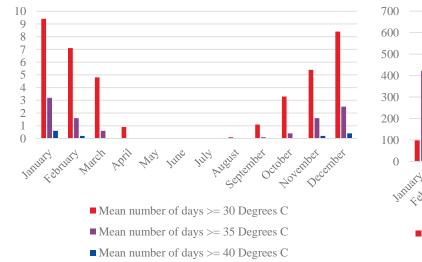


Figure 8: Wind data for Williamtown RAAF (BoM).


Existing climate characteristics


Medowie High School

The following figures illustrate the climate statistics from the Bureau of Meteorology (BoM) between 1942 and 2024 for Williamtown RAAF (weather station number: 61078).

Key observations of existing climate characteristics for this site include:

- Annual mean maximum and minimum temperatures are 23.2°C and 12.5°C, respectively.
- The total annual mean rainfall is 1128.7mm.
- Mean relative humidity at 9am and 3pm ranges between 64-80% and 50-62%, respectively.
- The highest recorded temperature was 45.5°C, recorded on 11th February 2017.

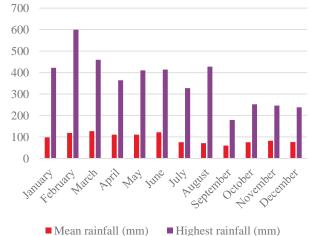


Figure 9: Historical climate statistics showing the mean, maximum and minimum temperature and rainfall ranges (BoM).

Future climate

Climate change scenarios

Overview of climate data

Climate change scenarios provide coherent, plausible, and simplified descriptions of potential future climate conditions, serving as the foundation for climate projections.

The Intergovernmental Panel on Climate Change (IPCC), in its Sixth Assessment Report (AR6), introduced a new set of pathways known as Shared Socio-economic Pathways (SSPs). These pathways explore how changes in social, technological, and economic factors may influence greenhouse gas emissions over time. The climate change projections for the SSPs draw on the latest round of coordinated global climate models known as CMIP6, among many other lines of evidence.

The NSW Government has identified SSP3 as a high-emission scenario for planning purposes. Under SSP3, carbon dioxide emissions are expected to double by 2100 if no additional climate policies are implemented, potentially leading to an increase of approximately 4°C in global temperatures.

For this assessment, climate projections have been sourced from the NSW and Australian Regional Climate Modelling (NARCliM) project version 2.0, which offers high-resolution data at a 4 km grid cell scale.

This data has been supplemented with downscaled projections from the previous round of global climate models, CMIP5, published in the Fifth Assessment Report (AR5) and consolidated from the Climate Change in Australia (CCIA) Climate Futures datasets.

Adopted time horizons

According to the Australian Building Codes Board (ABCB), the design life for a normal building is 50 years. Depending on the accessibility and cost to replace or repair different subsystems of a building, the design life ranges from 5 to 25 years. Therefore, climate change projections have been collated for 2030, 2050, and 2070 time periods.

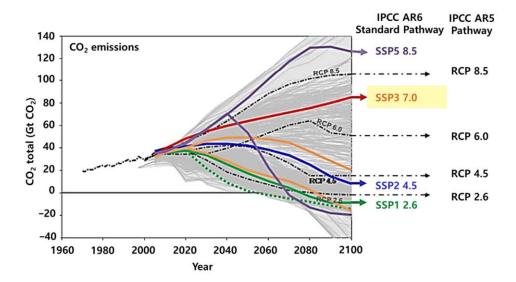


Figure 10: IPCC AR5 and AR6 climate change scenarios

Climate change projections

Future climate hazards

Climate hazards	Indicator *	Baseline (1942 - 2024,	Projections							
Cliniale nazarus	indicator	Williamtown RAAF)	Unit	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Data source			
Ambient air temperature	Mean surface temperature (annual) ℃	17.6	Absolute change (°C)	0.75	1.74	2.42	NARCliM2.0, 4km gridded data. New South Wales, Climate Change Snapshot.			
increase	Mean maximum temperature (annual) ℃	23.2	Absolute change (°C)	0.77	1.84	2.45	NARCliM2.0, 4km gridded data			
	Average days per year above 35°C	10	Absolute change (Days per annum)	2.9	8.29	11.97	NARCliM2.0, 4km gridded data			
Extreme heat	Average days per year above 40°C	1.4	Days per annum	Not available	Not available	Not available	New South Wales, Climate Change Snapshot.			
	Number of heatwave days	9	Days per annum	12.5	Not available	27.6	New South Wales, Climate Change Snapshot.			
	Hottest day, ℃	45.5	Absolute change (°C)	Not available	Not available	Not available	New South Wales, Climate Change Snapshot.			
Extreme cold	Average days per year below 2°C	3.6	Absolute change (Days per annum)	-0.31	-0.46	-0.49	NARCliM2.0, 4km gridded data			
	Rainfall intensity climate change factor for <1hrNot availabledurationRainfall intensity climate change factor for 6hr durationNot available		Percentage change (%)	18	29	42	Australian Rainfall & Runoff Data Hub. Updated climate change factors for IFD Initial loss and continuing loss based on IPCC AR6 temperature increases from the updated			
Flooding			Percentage change (%)	12	19	28	Climate Change Considerations (Book 1: Chapter 6) in ARE (Version 4.2). Climate change factors under SSP3-7.0 have			
	Rainfall intensity climate change factor for >24hr duration	Not available	Percentage change (%)	10	15	21	been utilised for consistency with NARCliM 2.0 high emission projections. Climate change factors to be applied to 2016 IFD.			

Climate change projections

Future climate hazards

Climate	Indicator *	Baseline (1942 - 2024, Williamtown RAAF)	Projections							
hazards	indicator		Unit	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	RCP 8.5 2030	RCP8.5 2070	Data source	
	Mean annual precipitation (mm)	1128.7	Percentage change (%)	-3.92	-15.71	-10.46	Not applicable	Not applicable	NARCliM2.0, 4km gridded data	
	Mean Summer precipitation (mm)	293.9	Percentage change (%)	-9.32	-17.1	-12.31	Not applicable	Not applicable	NARCliM2.0, 4km gridded data	
Drought	Mean Autumn precipitation (mm)	348.4	Percentage change (%)	11.51	-11.23	-2.87	Not applicable	Not applicable	NARCliM2.0, 4km gridded data	
	Mean Winter precipitation (mm)	269.0	Percentage change (%)	-21.43	-26.01	-19.82	Not applicable	Not applicable	NARCliM2.0, 4km gridded data	
	Mean Spring precipitation (mm)	218.8	Percentage change (%)	0.99	-7.56	-8.31	Not applicable	Not applicable	NARCliM2.0, 4km gridded data	
Humidity	Annual near-surface relative humidity (%)	73	Percentage change (%)	Not available	Not available	Not available	-0.59	-1.42	Climate Change in Australia. East Coast sub- cluster. 50th percentile data. RCP8.5, CMIP5 data.	
Solar radiation	Annual surface downwelling shortwave radiation (MJ/m^2)	16.9	Percentage change (%)	Not available	Not available	Not available	0.838	1.092	Climate Change in Australia. East Coast (South) sub-cluster. 50th percentile data. RCP8.5, CMIP5 data.	
Bushfire	Number of severe fire danger days (where FFDI > 50) per year	8.3	Number of days	0.45	0.86	1.07	Not applicable	Not applicable	NARCliM2.0, 4km gridded data. New South Wales, Climate Change Snapshot.	
Damaging winds	Annual average near-surface (2 metres) wind speed (ms ⁻¹)	3.6	Percentage change (%)	Not available	Not available	Not available	-0.5	-0.6	Climate Change in Australia. East Coast (South) sub-cluster. 50th percentile data. RCP8.5, CMIP5 data.	
	Annual total time above 8 m/s (%)	7	N/A	Not available	Not available	Not available	Not available	Not available	BoM weather station	

Climate risk assessment

Asset component categories

Climate risks affect several asset categories

Climate-related risks have been identified across several aspects of the Medowie High School activity. These are groups into key asset component categories to enable targeted risk treatment through effective adaptation measures.

Asset category	Indicative life of asset category	Description
Architecture	50 years	The overall aesthetic design of the building, including internal layouts, external facades, finishes, and functional aspects of the building's spaces.
Building services	15-30 years	Systems that ensure the building functions properly, including electrical, HVAC (heating, ventilation, air conditioning), plumbing, and fire safety systems.
Civil	50 years	The external works related to site infrastructure such as roads, drainage, and other site development works required for access and utility services.
Structural	50 years	Core systems providing support and stability to the building, including beams, columns, foundations, and load-bearing elements.
Landscaping	20 years	External elements like gardens, lawns, pathways, retaining walls, and other features that enhance the outdoor aesthetic and function of the site.
Transport	30-50 years	Connectivity to transport systems including roads, public transport, carparks.
Utilities	30-50 years	Infrastructure for water, electricity, gas, telecommunications, and waste management systems that connect the building to external networks.
Operations	50 years	Operations of site including asset management.
Human health	N/A	Aspects of building design and operation that impact occupants' physical and mental health, including indoor air quality, lighting, noise, ventilation, and safety.

Climate change risk assessment

Approach

This section outlines the priority climate change impacts relating to each of the asset components categories. Priority risks impacts are those with 'medium', 'high' or 'extreme' risk levels. The assessment has been informed by the climate change projections, relevant project plans, and input from the project team and wider stakeholders. *All risks have been documented and are available in Appendix B*.

For each potential climate impact, the consequence and likelihood of occurrence were assessed using the criteria matrices in Appendix A. Overall risk level is determined by the product of consequence and likelihood, and these assessments are on the basis of no existing adaptation measures being incorporated into design and operations.

In total the assessment has identified 47 risks, of which 0 were 'extreme', 9 were 'high', 31 were 'medium', and 7 were 'low'.

The assessment includes both direct and indirect risks:

- Direct risks are impacts (attributable to climate change) that cause damage, extra costs, accelerated deterioration or disruption of services provided.
- Indirect risks are impacts on another system or organisation which disrupt the direct supply of goods or services that the development critically relies upon such as energy, water, transport, and telecommunications.

		Consequence						
		Insignificant	Minor	Moderate	Major	Catastrophic		
	Almost Certain Medium Medi		Medium	High Extreme		Extreme		
_	Likely Medium Medium		High	Extreme	Extreme			
Likelihood	Possible	Low	Medium	Medium	High	Extreme		
	Unlikely	Low	Low	Medium	High	High		
	Rare	Low	Low	Medium	Medium	High		

Figure 11: Risk matrix.

Priority climate-related risks

Risk ID	Hazard	Risk impact	Impacted asset component	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Justification
12	Extreme Heat	Thermal mass absorbs and emits heat resulting in increased ambient air temperatures in outdoor areas causing adverse impact on amenity for staff and students.	Human Health	Medium	High	High	Urban heat island effects reduces outdoor thermal comfort for students, staff and visitors, resulting in moderate service impact consequence multiple times per year due to reduced capacity for recreation and socialisation in outdoor areas. Likelihood of disruption from heatwaves increases from 2030 to 2070 due to increasing duration, frequency, and amplitude of heatwaves.
15	Bushfire	Bushfire damage to the school buildings and the surrounds.	Architecture	High	High	High	This site is in a bushfire zone. It is likely that bushfire damage will increase by 2070, and have major structural, buildings and financial consequences to the school buildings and surrounds.
17	Bushfire	Bushfires in the surrounding area may lead to poor indoor and outdoor air quality, affecting accessibility, health and safety of students, staff and visitors.	Human Health	High	High	High	Poor air quality due to ash and bushfire events results in major consequences to operations, health and safety for students, staff and visitors. Bushfire risk has been increasing over time, and so it is likely that air quality will impact by 2070.
20	Bushfire	Bushfires in the surrounding area may lead to falling ash contaminating water catchments and retention systems.	Utilities	High	High	High	Ash contamination to water catchments can have major consequences on the water supply systems, durability, health and safety, and financial costs incurred from clean up and associated with the maintenance of the water system. By 2070 it is likely that ash contamination of water systems will occur as bushfire risk is increasing over time.
28	Flooding	Localised flooding impacting building system services and connection to utilities.	Building Services	Medium	High	High	Impacts on the building system services and utilities connection can have moderate consequences on the operation, health and safety of students, staff and visitors. This inaccessibility is likely by 2070 as flood risk has been increasing over the years.
29	Flooding	Extreme rainfall events leading to debris and sediment runoff, causing blockage to drainage systems. Blockage may result in flooding and resulting effects.	Civil	Medium	High	High	The inability of stormwater to drain due to blockages cause by stormwater debris is likely as flooding intensity and frequency is increasing over time. These blockages can have moderate consequences to operation and financial costs incurred due to damages to drainage.
31	Flooding	Localised flooding causes disruption to carpark access, public transport, and access roads, including for emergency vehicles.	Transport	Medium	High	High	It is likely that localised flooding can cause inaccess to carparks, vehicles, emergency services which can have moderate consequences to health, safety, operations and financial costs.
32	Flooding	Increased rainfall intensity causing damage to road surface (increased stripping rate, likelihood of pot-holing from moisture entering cracks in surface), reducing access to the school.	Transport	Medium	High	High	Due to site being in a flood zone, the likelihood of exceeding the drainage system capacity is possible and would likely only result from a significant flood event. Due to some trafficability, there will be some impacts to staff and students and minor financial impact to repair the access roads.
33	Flooding	Extreme rainfall events leading to sewer flooding, debris and sediment runoff, causing blockage to drainage systems.	Utilities	Medium	High	High	Sewer flooding and drain blockages due to stormwater flooding intensity and frequency is increasing over time. These blockages can have moderate consequences to operation and financial costs incurred due to damages to drainage and sewer flooding.

Priority climate-related risks

Risk ID	Hazard	Risk impact	Impacted asset component	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Justification
2	Ambient air temperature increase	Increased HVAC system energy consumption, resulting in higher greenhouse gas emissions and higher operational costs.	Building Services	Medium	Medium	Medium	Mean average and maximum temperatures are projected to increase under both climate scenarios, therefore it is almost certain that energy consumption will increase with increased HVAC system power demand. The financial consequence of this is minor, and therefore there is a minor consequence level. The carbon impact of slightly increased energy use is also a minor consequence level.
3	Ambient air temperature increase	Increased pooling of air deteriorating air quality in outdoor spaces, affecting human health and safety for staff and students.	Human Health	Low	Medium	Medium	Temperature increase can occur during low wind days increasing pooling of air and more concentrated pollution, resulting in minor health and safety consequence.
4	Ambient air temperature increase	Temperature and humidity impacting on air quality through increased pollen, increasing health impacts and associated respiratory disorders.	Human Health	Low	Medium	Medium	Increased pollen and similar particles can be more prevalent during warmer months which reduce overall outdoor air quality, resulting in minor health and safety consequence.
7	Ambient air temperature increase	Need for more frequent waste disposal to reduce pest, disease, and nuisance risk from waste holding in warmer/ wetter conditions.	Utilities	Medium	Medium	Medium	The presence of pests, diseases, rodents and other nuisances can result in minor consequences to the health and safety of students, staff and visitors, and can have minor financial costs associated with remediation and clean up. Warmer and wetter conditions are increasing over time, and therefore the associated risk of pests and tropical diseases will be likely by 2070.
8	Ambient air temperature increase	Heat impacts on water demand for site (landscaping, general school use).	Utilities	Low	Medium	Medium	Increased water demand for landscaping and school use during heatwaves results in insignificant financial consequence.
9	Extreme Heat	Heating of external materials and surfaces, such as handrails, results in burn risk for students.	Architecture	Low	Medium	Medium	Increased temperatures of external building features such as handrails, bike parks, etc. during heatwave conditions can cause minor health and safety concerns for students and staff.
10	Extreme Heat	Increased peak event temperatures and numbers of extreme heat days, leading to increased peak demand from cooling and ventilation systems and reduced ability for cooling and ventilation systems to maintain internal set points.	Building Services	Medium	Medium	Medium	Increased peak temperatures and extreme heat days elevate cooling and ventilation demand and increase risk that internal temperature set points are not maintained. Risk of power outage is addressed in Risk ID #13. Failing to meet set points results in a minor social consequence for students, staff and visitors, with increasing likelihood as extreme heatwaves become more frequent.
11	Extreme Heat	Increased thermal discomfort and risk of heat stress for building occupants in areas proposed to not have AC such as workshops.	Human Health	Medium	Medium	Medium	Increased incidence and amplitude of extreme heat days by 2070 may result in reduced thermal performance of building envelope at least annually. Vulnerable students, staff and visitors may require medical treatment for heat-related illnesses which is a moderate consequence.

Priority climate-related risks

Risk ID	Hazard	Risk impact	Impacted asset component	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Justification
13	Extreme Heat	Increased external temperatures may lead to increased load on the existing electricity grid causing power outages. School buildings may be without power or internet for an extended period.	Utilities	Medium	Medium	Medium	Without backup power, network power outages may have a temporary moderate impact on students and staff. Temperatures have been increasing over time, therefore there is a possibility of power outages occurring in the future.
45	Extreme Heat	Heat-related anti-social behaviour in non-air-conditioned spaces	Human Health	Medium	Medium	Medium	Temperature has been increasing over time and it is likely that they will continue to increase into the future. Anti-social behaviours in non-air-conditioned spaces can have some consequences to the health, safety, and wellbeing of students, staff and visitors.
16	Bushfir e	Bushfires in the surrounding area may lead to an accumulation of ash in roof drainage, leading to drainage and structural issues.	Civil	Medium	Medium	Medium	It is likely that drainage blockages can occur more frequently into the future as bushfire events and ash/debris accumulation occur. These blockages can have moderate consequences on the operation, repair, maintenance, and possible replacement of the drainage system.
18	Bushfir e	Bushfire events require increased cleaning of infrastructure and façades to remove smoke particulates and ash accumulation.	Operations	Medium	Medium	Medium	By 2070, it is likely that there will be an increase in building cleanings due to an increase in bushfire events which can have moderate consequences on the operation, maintenance, financial costs, structural, architectural and health and safety of students and staff.
19	Bushfir e	Bushfire events may result in power restrictions and/or power failure. School buildings may be without power or internet for an extended period.	Utilities	Medium	Medium	Medium	Power outage results in major consequences to operations, health and safety for the site if no backup power plan is in place. An extended power outage can have severe disruptions to students, staff and visitors and have major consequences to health, safety and operations. Bushfire risk is increasing over time, and therefore associated power outages will be likely by 2070.
46	Bushfir e	Bushfire ash can impact output of PV cells causing further impacts to non-renewable power consumption.	Architecture	Medium	Medium	Medium	Bushfire risk is increasing over time, and this site is in a bushfire prone area, therefore it is possible that ash and debris can impact PV panels. The debris and ash can have moderate consequences to the PV panels in terms of operation, financial costs associated with repair, replacement and cleaning, all depending on the intensity of the bushfire event.
22	Drought	Death of existing vegetation and failure of new green space.	Landscaping	Low	Medium	Medium	It is possible that NSW will experience severe drought by 2070. This will result in minor impacts to school vegetation and landscaping.
23	Drought	Increased need for maintenance/ irrigation for landscaped areas, including watering and replacement of vegetation, especially during periods of water restrictions.	Operations	Medium	Medium	Medium	Failure of vegetation and an increase in watering landscape due to increase in drought conditions over time is possible, however it will result in minor consequences to water demand, financial costs, and operation.

Priority climate-related risks

Risk ID	Hazard	Risk impact	Impacted asset component	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Justification
24	Drought	Less water availability for onsite water catchments and reuse systems (e.g. rainwater harvesting), increasing the reliance on mains water supply.	Operations	Low	Medium	Medium	It is possible that by 2070, there will be increased pressure on the mains water supply due to the increase in the intensity and frequency of drought conditions. These pressures can have minor impacts on the operation, financial cost, and health and safety of students and staff.
26	Drought	Increased soil movement and load on foundations due to fluctuation in soil moisture and groundwater.	Structural	Low	Medium	Medium	Depending on soil type (determined through geotechnical assessments of site), drought is unlikely to result in structural damage to buildings and hardscaping. If damage did occur, this would cause minor financial consequences.
27	Floodin g	Localised flooding causes damage to buildings (e.g. ground floor structures, assets, and systems) and temporary disruption to building access.	Architecture	Medium	Medium	Medium	This site is in a flood zone; however, it is the field and court that is exposed to minor flood inundation and so it can have minor consequences to the repair, maintenance, operation and health and safety of students, staff and visitors. It is likely by 2070 for the site to experience flooding as the frequency and intensity of flooding events have been increasing over time.
30	Floodin g	Wet conditions can attract pests such as mosquitoes, rodents, and insects. These pests can carry diseases and create additional health risks for building occupants.	Human Health	Medium	Medium	Medium	Increased rainfall intensity may bring higher influxes of unwanted pests resulting in moderate health impacts and minor financial consequences for pest control and structural damage reparations.
47	Floodin g	Extreme rainfall events can cause the school to be isolated from the community.	Human Health	Medium	Medium	Medium	It is possible that localised flooding can cause inaccess and isolation of the school from the rest of the community during extreme weather events which can have moderate consequences to the health, safety, and wellbeing of students, staff and visitors.
34	Damagi ng winds	Increased effects of wind tunnelling affecting the usability, amenity and safety of outdoor areas and rooftop play.	Architecture	Medium	Medium	Medium	Wind tunnelling can have minor impacts on the usability, operation, safety and durability of outdoor spaces. Depending on the layout of massing, wind tunneling may occur during high wind events if not adequately considered in design. There is low consensus on wind projections, therefore likelihood of impact has remained constant over time.
35	Damagi ng winds	Damaging winds affect secure attachment of building materials, roofing structures, PV panels (if included in design) etc.	Architecture	Medium	Medium	Medium	Winds at high speeds can have moderate impacts on the building features as it can cause them to break, fall and require replacement and maintenance which can have up to moderate financial, operational and heat and safety concerns. Wind loading should be adequately considered in design in accordance with structural standards.
36	Damagi ng winds	Storm events result in communications and security system failure (e.g. security surveillance, access control, internet, phone line, mobile) impacting school communications.	Buildings Services	Medium	Medium	Medium	Failure of security and electrical assets can have moderate consequences to the health and safety of students, staff and visitors. These power outages will be possible by 2070 as storm events become increasingly frequent and intense.

Priority climate-related risks

Risk ID	Hazard	Risk impact	Impacted asset component	SSP3-7.0 2030	SSP3-7.0 2050	SSP3-7.0 2070	Justification
37	Damaging winds	Falling trees and branches, impacting people, facades and/ or external assets, and access.	Landscaping	Medium	Medium	Medium	Falling debris and limbs are possible in high-wind events, causing moderate consequences to health and safety of students, staff and visitors. The likelihood of falling tree limbs increases with drought conditions in the future.
38	Damaging winds	Increased structural load on structures and buildings.	Structural	Medium	Medium	Medium	Structural damage to buildings is rare due to compliance with AS1170.2 Wind Actions, assuming compliance with structural standards and associated wind loading considerations. These damages can have moderate consequences to the structures, buildings, health and safety of students, staff and visitors.
39	Damaging winds	Storms causing acute/extended power outages requiring extended use of power redundancy measures (e.g. generators).	Utilities	Low	Medium	Medium	It is possible that power outages due to increased wind speeds and storm events will increase by 2070. These can have minor consequences to the operation, financial costs, health and safety of students, staff and visitors.
40	Hail	Hail causing damage to building façade, rooftop structures, and exposed assets.	Architecture	Medium	Medium	Medium	Hail can damage building façades and rooftop structures, leading to costly repairs (up to \$1 million), potential structural weaknesses, and compromised weather protection, thus impacting overall building integrity and safety. This may occur multiple times in a generation.
42	Multi- hazard	Sand and dust storms leading to poor indoor air quality affecting occupant health and safety.	Human Health	Medium	Medium	Medium	Sand and dust storms are unlikely to occur in the future, but they can have some moderate consequences to health and safety of students and staff.
43	Multi- hazard	Extreme weather events (such as increased temperature, storms and precipitation) impacting vegetation health and increasing the chances of debris and/or limbs causing injury and damage.	Landscaping	Medium	Medium	Medium	Extreme weather events can cause trees to die or drop limbs, posing moderate safety risks to staff, students, and visitors through injury and minor inconvenience due to creating roadblocks/ obstacles.
44	Multi- hazard	Extreme weather events can disrupt supply chains, affecting delivery of supplies.	Operations	Medium	Medium	Medium	Extreme weather events in Australia disrupt supply chains, hindering the delivery of medical supplies and food. Without adequate redundancy in supplies, this could cause moderate health and safety impacts for students,, staff and visitors and reduce amenity.

Adaptation planning

Adaptation measures

Design and operational responses to manage risks

This section sets out the proposed adaptation measures for addressing priority risks. Adaptation measures include both design and operational measures.

Design measures: Physical measures that mitigate risk through design- or infrastructure-led responses are typically developed and incorporated for project completion (e.g., high-performance glazing) but may also be incorporated or triggered later as needed (e.g., installation of high-grade filters to manage worsening bushfire smoke).

Operational measures: Non-physical measures that mitigate risk through procedural, educational, or organisational responses are typically developed and finalised in the design stage for project completion and should be reviewed and updated periodically for ongoing benefit throughout the project's operational life.

Adaptation measures listed are prior to development and shall be implemented by various responsible owners, as indicated. Some adaptation measures are already underway.

Each intervention has been prescribed an adaptation identification number (i.e. D (Design) 01, or O (Operation) 01). The risk impacts are then aligned with the appropriate adaptations.

Adaptation measures

Design adaptation measures

Adaptation ID #	Design adaptation measures	Relevant priority risks (Risk ID #)
D01	Ensure appropriate selection of durable materials in compliance with EEFSG, considering various aspects of materials including colour, durability, feasibility, etc.	2
D02	Create spaces for natural ventilation, shading, etc. to reduce load on AC systems for cooling and capital cost.	2, 3, 4, 10, 13, 45
D03	Plans in place for power generator to be installed in the future to cope with power demand for systems.	2, 39
D04	Evaluate the site's wind flow patterns and consider modifications to building and landscape design to encourage natural ventilation. This may include optimizing the orientation of buildings, using open spaces strategically, and adding features such as windbreaks or vents that help guide airflow through key areas. Additionally, ensure that nearby structures or vegetation are not blocking wind circulation, and incorporate solutions like porous fencing or green walls to break up air stagnation and improve the dispersion of pollutants.	3
D05	Incorporate ventilation systems and air circulation by installing windows and fans in/near indoor areas. Install air filtration systems, such as HEPA filters, in HVAC systems for indoor spaces to reduce pollen infiltration. Design outdoor areas with consideration for local vegetation to minimize pollen-producing plants near high-traffic areas.	4
D06	Use of native plants and resilient plant species to lower water consumption.	8
D07	Ensure a maintenance and landscaping plan is in place to communicate drought risk.	8
D08	Minimise the use of metal surfaces in unshaded areas and ensure a balance between external shading and trees.	9
D09	Implement high-efficiency HVAC systems with demand-response capabilities to manage peak loads effectively. Consider integrating thermal storage and passive cooling strategies, such as enhanced insulation, reflective surfaces, and natural ventilation. These measures can reduce reliance on mechanical cooling and help maintain internal set points during extreme conditions.	10
D10	Incorporate ventilation systems and air circulation by installing windows and fans in/near indoor areas.	11
D11	Incorporate access to water fountains for student bottle refill and zip taps for cold water in staff rooms.	11, 12

Adaptation measures

Design adaptation measures

Adaptation ID #	Design adaptation measures	Relevant priority risks (Risk ID #)
D12	Improve building insulation and shading to minimise heat gain. Implement zoned cooling systems for more precise temperature control and incorporate passive cooling strategies, such as cross-ventilation and night-time purging. Ensure adequate hydration and cooling stations for occupants during extreme heat events.	11, 12
D13	Increased shading for external/outdoor areas (near canteen, entries, main play spaces), and early procurement of trees to ensure trees are mature during planting and landscaping stage across the site, including accessible shelters for respite from weather, evenly distributed across outdoor areas.	12
D14	Plans in place for power generator to be installed in the future to cope with power demand for systems.	13, 17, 19, 20, 39
D15	Design to BAL19 requirements and locate student areas away from surrounding hazards.	15, 17, 20
D16	Metal gutter guard mesh to eaves gutters may reduce impact of ash and debris entering roof drainage system.	16
D17	Smoke detection in outside fresh air systems can be considered to reduce circulation of environmental pollutants.	17
D18	Optimise location of air intakes away from bushfire attack zone so they are shielded by the building	17
D19	Filter through mechanical ventilation, rather than just natural ventilation	17
D20	Water filtration can also be added to the portable cold water coming into the school.	20
D21	Ensure species selection to minimise use of species that tends to drop limbs, resistant and native species to lower water consumption.	22, 23, 37
D22	Ensure a maintenance and landscaping plan is in place to communicate drought risk.	22, 23, 24, 37
D23	Provision of rainwater tanks to supplement irrigation.	22, 23
D24	Foundations will be piles founded deep underground and suspended ground slabs unaffected by ground movement.	26
D25	Ensure school and essential infrastructure such as substation is above flood levels. Flood modelling has considered 0.5% AEP floods which shows no impact on school buildings.	27, 28

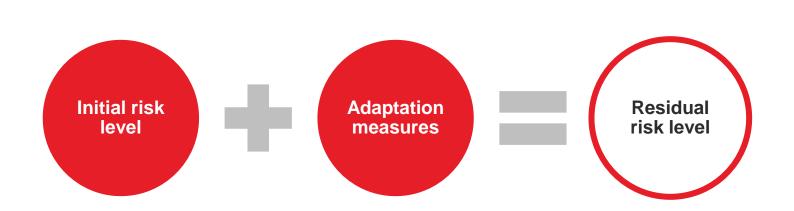
Adaptation measures

Design adaptation measures

Adaptation ID #	Design adaptation measures	Relevant priority risks (Risk ID #)
D26	Incorporate large gutter and downpipe sizes to account for future rainfall intensity flow and stormwater drainage.	28, 29, 31, 33
D27	As part of stormwater quality controls, litter pits are present to reduce risk.	29, 33
D28	Avoid water ponding opportunities, ensure good drainage, and insect screening.	30
D29	Building details to be designed as per EFSG and AS1170.1 Permanent, Imposed and Other Actions. Wind and earthquake loads are as per AS1170.2 Wind Actions and AS1170.4 Earthquake Actions.	34, 35, 38
D30	ICT to include mobile phone backup for key systems and security equipment to have integrated batteries.	36
D31	Locate trees that are prone to drop limbs away from student areas and set back from building and roofs.	37
D32	Power storage options should be considered.	39
D33	Consider alternative access routes.	47
D34	Select robust finishes to withstand hail damage.	40
D35	Retractable roof design proposed to provide protection from hail, rain, wind and storm events.	42, 43
D36	Design for automated PV panels to avoid hail, rain and extreme weather events.	42, 43

Adaptation measures

Operational adaptation measures


Adaptation ID #	Operational adaptation measures	Relevant priority risks (Risk ID #)
O01	Closure of school in extreme weather conditions, bushfire and flood events.	12, 15, 17, 31
O02	Ensure a flood emergency management plan is in place.	31
003	Spatial provisions for emergency supplies, such as a fully stocked kitchen, and bottled water, are present on site for students, staff and visitors should they be isolated for an extended period of time.	31
O04	Snake fence needs to be regularly cleared of debris post weather and flood events.	37
O05	Develop an emergency management plan with a strategy for supply chain management, including stockpiling critical equipment or using secondary suppliers in case of events impacting goods and services delivery.	44
O06	Maintain an established emergency management taskforce at Ryman Healthcare to reduce impacts through rapid responses.	44
O07	Establish relationships with external stakeholders for fuel, food, and medicine supplies.	44

Residual risk levels for priority risks

Reducing risk level as low as practicable

Residual risk describes the remaining risk level after adaptation measures have been adopted. A residual risk assessment has been undertaken to determine the efficacy of adaptation measures in reducing or mitigating priority risks.

Residual risk levels are determined based on the assumption of full adoption of adaptation measures. All extreme and high risks have been treated to a medium level or below. Residual risk levels are available in Appendix B.

Monitoring and evaluation

ARUP

Monitor and review

Reducing risk level as low as practicable

A comprehensive climate risk assessment and subsequent adaptation workshop has been conducted that outlines the appropriate design and operational interventions that will reduce the overall risk level of priority risks.

Responsibility for carrying out adaptation measures outlined in this report lies with identified nominated adaptation measure owners. These are summarised in the following section.

To manage climate-related risks for Medowie High School, it is important that progress is tracked and that 'road-blocks' preventing risk treatment are identified and resolved. Owners are responsible for the implementation, monitoring, reporting and improvement of measures to address key climate risks for the development.

This Climate Resilience Plan is a 'living document' that will need to be updated to include emerging information and aligned programs, and changes to base information informing climate change scenarios.

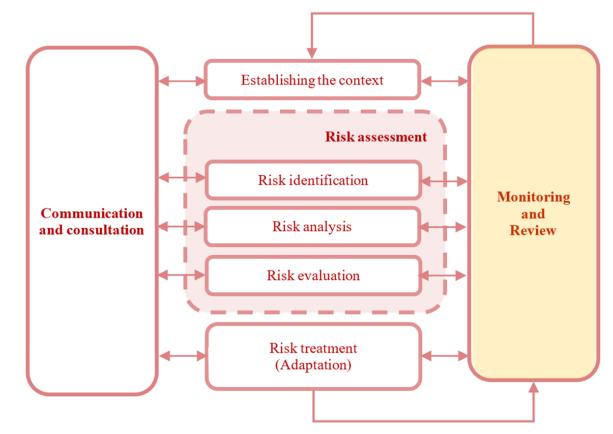


Figure 12: Risk assessment and management approach (AS5334-2013)

Implementation plan

Nominated responsible owners for design adaptation measures

Adaptation ID #	Nominated owner	Relevant priority risks (Risk ID #)	Adaptation ID #	Nominated owner	Relevant priority risks (Risk ID #)
D01	Building services	2	D17	Architect, Landscaping and Mechanical	17
D02	Mechanical Engineer	2, 3, 4, 10, 13, 45		Engineer	15
D03	Electrical Engineer	2, 39	– D18	Architect, Landscaping and Mechanical Engineer	17
D04	Buildings services	3	D19	Architect, Landscaping and Mechanical	17
D05	Mechanical Engineer	4		Engineer	20
D06	Landscaping	8	- D20	Hydraulics	20
D07	Landscaping	8	- D21	Landscape	22, 23, 37
D08	Architect and Landscaping	9	– D22	Landscape	22, 23, 24, 37
D09	Electrical Engineer	10	– D23	Hydraulics	22, 23
D10	Architect	11	– D24	Buildings/Structures	26
D11	Architect and Landscaping	11, 12	– D25	Architect, Flood Service Engineer, Hydraulics, Electrical Engineer	27, 28
D12	Architect and Landscaping	11, 12	D26	Hydraulics and Electrical Engineer	28, 29, 31, 33
D13	Architect and Landscaping	12	D27	Hydraulics	29, 33
D14	Architect, Landscaping and Mechanical Engineer	13, 17, 19, 20, 39	D28	Landscape	30
D15	Architect, Landscaping and Mechanical Engineer	15, 17, 20	D29	Buildings	34, 35, 38
D16	Hydraulics	16	D30	Utilities/Operations	36

Implementation plan

Nominated responsible owners for design adaptation measures

Adaptation ID #	Nominated owner	Relevant priority risks (Risk ID #)
D31	Landscape	37
D32	Electrical Engineer	39
D33	Civil Engineer	47
D34	Buildings/Structures	40
D35	Buildings/Structures	42, 43
D36	Buildings/Structures	42, 43

Next steps (mitigation measures)

Medowie High School activity

The following steps should be undertaken to ensure the delivery of the adaptation measures and resilience of the activity to future climate change.

- Design adaptation measures should be assessed for feasibility.
- Any design measures excluded from the design due to feasibility, should not materially impact the risk level for the identified risk impacts. Alternative measures should be identified if there is a material impact to risk levels.
- Feasible design measures should be implemented at subsequent design stages and during construction.
- Proposed operational adaptation measures should be included in site-specific operational plans.
- Risk owners should take responsibility for implementation of proposed measures during relevant design stages and ensure any required handovers are undertaken.
- Adaptation measures should be adequately considered in asset management.

ARUP

Appendix A

AS5334: 2013 consequence and likelihood criteria matrices

Appendix A

Consequence criteria matrix

Rank	Adaptive Capacity	Infrastructure/ Services	Social/Cultural	Governance	Financial	Environmental	Economy
Insignificant	No change to the adaptive capacity	No infrastructure damage, little change to service	No adverse human health effects	No changes to management required	Little financial loss or increase in operating expenses	No adverse effects on natural environment	No effects on the broader economy
Minor	Minor decrease to the adaptive capacity of the asset. Capacity easily restored	Localized infrastructure service disruption No permanent damage. Some minor restoration work required Early renewal of infrastructure by 10–20% Need for new/modified ancillary equipment	Short-term disruption to employees, customers or neighbours Slight adverse human health effects or general amenity issues	General concern raised by regulators requiring response action	Additional operational costs Financial loss small, <10%	Minimal effects on the natural environment	Minor effect on the broader economy due to disruption of service provided by the asset
Moderate	Some change in adaptive capacity. Renewal or repair may need new design to improve adaptive capacity	Limited infrastructure damage and loss of service. Damage recoverable by maintenance and minor repair. Early renewal of infrastructure by 20–50%.	Frequent disruptions to employees, customers or neighbours. Adverse human health effects.	Investigation by regulators. Changes to management actions required.	Moderate financial loss 10–50%	Some damage to the environment, including local ecosystems. Some remedial action may be required	High impact on the local economy, with some effect on the wider economy
Major	Major loss in adaptive capacity. Renewal or repair would need new design to improve adaptive capacity.	Extensive infrastructure damage requiring major repair. Major loss of infrastructure service. Early renewal of infrastructure by 50–90%.	Permanent physical injuries and fatalities may occur. Severe disruptions to employees, customers or neighbours.	Notices issued by regulators for corrective actions. Changes required in management. Senior management responsibility questionable.	Major financial loss 50– 90%	Significant effect on the environment and local ecosystems. Remedial action likely to be required.	Serious effect on the local economy spreading to the wider economy.
Catastrophic	Capacity destroyed, redesign required when repairing or renewing asset	Significant permanent damage and/or complete loss of the infrastructure and the infrastructure service. Loss of infrastructure support and translocation of service to other sites. Early renewal of infrastructure by >90%.	Severe adverse human health effects, leading to multiple events of total disability or fatalities. Total disruptions to employees, customers or neighbours. Emergency response at a major level.	Major policy shifts. Change to legislative requirements. Full change of management control.	Extreme financial loss >90%	Very significant loss to the environment. May include localized loss of species, habitats or ecosystems . Extensive remedial action essential to prevent further degradation. Restoration likely to be required.	Major effect on the local, regional and state economies.

Appendix A

Likelihood criteria matrix

Rating	Descriptor	Recurrent or event risks	Long term risks	
Almost certain	Could occur several times per year	Has happened several times in the past year and in each of the previous 5 years or	Has a greater than 90% chance of occurring in the identified time period if the risk is not mitigated	
		Could occur several times per year		
Likely	May arise about once per year	Has happened at least once in the past year and in each of the previous 5 years	Has a 60–90% chance of occurring in the identified time period if the risk is not mitigated	
		or		
		May arise about once per year		
Possible	Maybe a couple of times in a generation	Has happened during the past 5 years but not in every year or	Has a 40–60% chance of occurring in the identified time period if the risk is not mitigated	
		May arise once in 25 years		
Unlikely	Maybe once in a generation	May have occurred once in the last 5 years or	Has a 10-30% chance of occurring in the future if the risk is not mitigated	
		May arise once in 25 to 50 years		
Rare	Maybe once in a lifetime	Has not occurred in the past 5 years <i>or</i> Unlikely during the next 50 years	May occur in exceptional circumstances, i.e. less than 10% chance of occurring in the identified time period if the risk is not mitigated	

Appendix B

Climate change risk register

Refer to attached Excel register

Suitably qualified professional

Amelia Tomkins

Senior Consultant | Climate Risk and Resilience

Arup

Wurundjeri Woiwurrung Country Sky Park, One Melbourne Quarter, 699 Collins Street, Docklands, VIC, 3008, Australia d +61 3 9668 5998 <u>arup.com</u>